Understanding Distributional Ambiguity via Non-robust Chance Constraint
نویسندگان
چکیده
منابع مشابه
Chance constrained uncertain classification via robust optimization
This paper studies the problem of constructing robust classifiers when the training is plagued with uncertainty. The problem is posed as a Chance-Constrained Program (CCP) which ensures that the uncertain datapoints are classified correctly with high probability. Unfortunately such a CCP turns out to be intractable. The key novelty is in employing Bernstein bounding schemes to relax the CCP as ...
متن کاملConvergence Analysis for Mathematical Programs with Distributionally Robust Chance Constraint
Convergence analysis for optimization problems with chance constraints concerns impact of variation of probability measure in the chance constraints on the optimal value and the optimal solutions and research on this topic has been well documented in the literature of stochastic programming. In this paper, we extend such analysis to optimization problems with distributionally robust chance cons...
متن کاملStability Analysis for Mathematical Programs with Distributionally Robust Chance Constraint
Stability analysis for optimization problems with chance constraints concerns impact of variation of probability measure in the chance constraints on the optimal value and optimal solutions and research on the topic has been well documented in the literature of stochastic programming. In this paper, we extend such analysis to optimization problems with distributionally robust chance constraints...
متن کاملUnderstanding functional dependencies via constraint handling rules
Functional dependencies are a popular and useful extension to Haskell style type classes. We give a reformulation of functional dependencies in terms of Constraint Handling Rules (CHRs). In previous work, CHRs have been employed for describing user-programmable type extensions in the context of Haskell style type classes. Here, we make use of CHRs to provide for the first time a concise result ...
متن کاملDistributionally robust chance constraints for non-linear uncertainties
This paper investigates the computational aspects of distributionally robust chance constrained optimization problems. In contrast to previous research that mainly focused on the linear case (with a few exceptions discussed in detail below), we consider the case where the constraints can be non-linear to the decision variable, and in particular to the uncertain parameters. This formulation is o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2019
ISSN: 1556-5068
DOI: 10.2139/ssrn.3398047